Molecular and catalytic properties of phytate-degrading enzymes (phytases)
Corresponding Author
Ralf Greiner
* Correspondent: Fax: +49 (0) 721/6625 457; e-mail: [email protected]Search for more papers by this authorCorresponding Author
Ralf Greiner
* Correspondent: Fax: +49 (0) 721/6625 457; e-mail: [email protected]Search for more papers by this authorSummary
Phytate-degrading enzymes catalyse the step-wise release of phosphate from phytate, the principle storage form of phosphorus in plant seeds and pollen. They are widespread in nature, occurring in plants and micro-organisms, as well as in some animal tissues. Phytate-degrading enzymes have been studied intensively in recent years because of the great interest in such enzymes for reducing phytate content in animal feed and food for human consumption. Phytate-degrading enzymes are also of interest for producing defined breakdown products of phytate for kinetic and physiological studies. Certain myo-inositol phosphates have been proposed to have novel metabolic effects and therefore, the physiological role of different myo-inositol phosphates is presently undergoing extensive research. Generally, phytase behaves like a monomeric enzyme with molecular masses between 40 and 70 kDa. Up to now, two main types of phytate-degrading enzymes have been identified; acid phytate-degrading enzymes with an pH optimum around pH 5 and alkaline phytate-degrading enzymes with an pH optimum around pH 8. Most of the so far described phytate-degrading enzymes belong to the acidic type, and their optimal pH ranges from 4.5 to 6.0. This review summarises the molecular features as well as catalytic properties of phytate-degrading enzymes and also discusses enzymatic phytate degradation.
References
- Baldi, B.G., Scott, J.J., Everard, J.D. & Loewus, F.A. (1988). Localization of constitutive phytases in lily pollen and properties of the pH 8 form. Plant Science, 56, 137–147.
- Barrientos, L., Scott, J.J. & Murthy, P.P. (1994). Specificity of hydrolysis of phytic acid by alkaline phytase from lily pollen. Plant Physiology, 106, 1489–1495.
- Baten, A., Ullah, A., Tomazic, V.J. & Shamsuddin, A.M. (1989). Inositol-phosphate-induced enhancement of natural killer cell activity correlates with tumor suppression. Carcinogenesis, 10, 1595–1598.
- Berka, R.M., Rey, M.W., Brown, K.M., Byun, T. & Klotz, A.V. (1998). Molecular characterization and expression of a phytase gene from the thermophilic fungus Thermomyces lanuginosus. Applied and Environmental Microbiology, 64, 4423–4427.
- Bianchetti, R. & Sartirana, M.L. (1967). The mechanism of the repression by inorganic phosphate of phytase synthesis in the germinating wheat embryo. Biochimica et Biophysica Acta, 145, 485–490.
- Bitar, K. & Reinhold, J.G. (1971). Phytase and alkaline phosphatase activities in intestinal mucosae of rat, chicken, calf, and man. Biochimica et Biophysica Acta, 268, 442–452.
- Brearly, C.A. & Hanke, D.E. (1996a). Inositol phosphates in the duckweed Spriodela polyrhiza L. Biochemical Journal, 314, 215–225.
- Brearly, C.A. & Hanke, D.E. (1996b). Metabolic evidence for the order of addition of individual phosphate esters to the myo-inositol moiety of inositol hexakisphosphate in the duckweed Spirodela polyrhiza L. Biochemical Journal, 314, 227–233.
- Brinch-Pedersen, H., Olesen, A., Rasmussen, S.K. & Holm, P.B. (2000). Generation of transgenic wheat (Triticum aestivum L.) for constitutive accumulation of an Aspergillus phytase. Molecular Breeding, 6, 195–206.
- Carrington, A.L., Calcutt, N.A., Ettlinger, C.B., Gustafsson, T. & Tomlinson, D.R. (1993). Effects of treatment with myo-inositol or its 1,2,6-trisphosphate (PP56) on nerve conduction in streptozotocin-diabetis. European Journal of Pharmacology, 237, 257–263.
- Cheryan, M. (1980). Phytic acid interactions in food systems. CRC Critical Reviews in Food Science and Nutrition, 13, 297–335.
- Claxon, A., Morris, C., Blake, D. et al. (1990). The anti-inflammatory effects of d-myo-inositol-1.2,6-trisphosphate (PP56) on animal models of inflammation. Agents Actions, 29, 68–70.
- Cooper, J.R. & Gowing, H.S. (1983). Mammalian small intestine phytase (EC 3.1.3.8). British Journal of Nutrition, 50, 673–678.
- Cosgrove, D.J. (1970). Inositol phosphate phosphatase of microbiological origin. Inositol pentaphosphate intermediates in the dephosphorylation of the hexaphosphates of myo-inositol, scyllo-inositol, and d-chiro-inositol, by a bacterial (Pseudomonas Sp.) phytase. Australian Journal of Biological Sciences, 23, 1207–1220.
- Cromwell, G.I., Coffey, R.D., Parker, G.R., Monegue, H.J. & Randolph, J.H. (1995). Efficacy of a recombinant-derived phytase in improving the bioavailability of phosphorus in corn-soybean meal diets for pigs. Journal of Animal Sciences, 71, 1831–1840.
- D'Silva, C.G., Bae, H.D., Yanke, L.J., Cheng, K.-J. & Selinger, L.B. (2000). Localization of phytase in Selenomonas ruminantium and Mitsuokella multiacidus by transmission electron microscopy. Canadian Journal of Microbiology, 46, 391–395.
- Davies, N.T. & Flett, A.A. (1978). The similarity between alkaline phosphatase (EC 3.1.3.1) and phytase (EC 3.1.3.8) activities in rat intestine and their importance in phytate-induced zinc deficiency. British Journal of Nutrition, 39, 307–316.
- Davies, M.I. & Motzok, I. (1972). Intestinal alkaline phosphatase and phytase of chicks: separation of isoenzymes, zinc contents and in vitro effects of zinc. Comparative Biochemistry and Physiology, 42B, 345–356.
- Eastwood, D. & Laidman, D. (1971). The mobilization of macronutrient elements in the germinating wheat grain. Phytochemistry, 10, 1275–1284.
- Fujita, J., Budda, N., Tujimoto, M. et al. (2000). Isolation and characterization of phytase isozymes produced by Aspergillus oryzae. Biotechnology Letters, 22, 1797–1802.
- Gabard, K.A. & Jones, R.L. (1986). Localization of phytase and acid phosphatase isoenzymes in aleurone layers of barley. Physiologia Plantarum, 67, 182–192.
- Gargova, S., Roshkova, Z. & Vancheva, G. (1997). Screening of fungi for phytase production. Biotechnology Techniques, 11, 221–224.
- Gibson, D.M. & Ullah, A.H.J. (1988). Purification and characterization of phytase from cotyledons of germinating soybean seeds. Archives of Biochemistry and Biophysics, 260, 503–513.
- Goel, M. & Sharma, C.B. (1979). Multiple forms of phytase in germinating cotyledons of Curcurbita Maxima. Phytochemistry, 18, 1939–1942.
- Golovan, S.P., Meidinger, R.G., Ajakaiye, A. et al. (2001). Pigs expressing salivary phytase produce low-phosphorus manure. Nature Biotechnology, 19, 741–745.
- Golovan, S., Wang, G., Zhang, J. & Forsberg, C.W. (2000). Characterization and overproduction of the Escherichia coli appA encoded bifunctional enzyme that exhibits both phytase and acid phosphatase activities. Canadian Journal of Microbiology, 46, 59–71.
- Graf, E. & Eaton, J.W. (1993). Suppression of colonic cancer by dietary phytic acid. Nutrition and Cancer, 19, 11–19.
- Greiner, R. (2001). Properties of phytate-degrading enzymes from germinated lupine seeds (Lupinus Albus var. Amiga). Proceedings of the 4th European Conference on Grain Legumes, Cracow, Poland. Pp. 398–399. Paris, France: AEP.
- Greiner, R., Carlsson, N.-G. & Larsson Alminger, M. (2000a). Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of Escherichia coli. Journal of Biotechnology, 84, 53–62.
- Greiner, R., Jany, K.-D. & Larsson Alminger, M. (2000b). Identification and properties of myo-inositol hexakisphosphate phosphohydrolases (phytases) from barley (Hordeum vulgare). Journal of Cereal Science, 31, 127–139.
- Greiner, R. & Egli, I. (2001). Untersuchungen zur Bestimmung der Phytaseaktivität in Getreide. Proceeding of the German Nutrition Society, 3, 22–23.
- Greiner, R., Haller, E., Konietzny, U. & Jany, K.-D. (1997). Purification and characterization of a phytase from Klebsiella terrigena. Archives of Biochemistry and Biophysics, 341, 201–206.
- Greiner, R. & Konietzny, U. (1996). Construction of a bioreactor to produce special breakdown products of phytate. Journal of Biotechnology, 48, 153–159.
- Greiner, R., Konietzny, U. & Jany, K.-D. (1993). Purification and characterization of two phytases from Escherichia coli. Archives of Biochemistry and Biophysics, 303, 107–113.
- Greiner, R., Konietzny, U. & Jany, K.-D. (1998). Purification and properties of a phytase from rye. Journal of Food Biochemistry, 22, 143–161.
- Greiner, R. & Larsson Alminger, M. (2001). Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by phytate-degrading enzymes of cereals. Journal of Food Biochemistry, 25, 229–248.
- Greiner, R., Larsson Alminger, M. & Carlsson, N.-G. (2001a). Stereospecificity of myo-inositol hexakisphosphate dephosphorylation by a phytate-degrading enzyme of baker's yeast. Journal of Agricultural and Food Chemistry, 49, 2228–2233.
- Greiner, R., Muzquiz, M., Burbano, C., Cuadrado, C., Pedrosa, M.M. & Goyoaga, C. (2001b). Purification and characterization of a phytate-degrading enzyme from germinated faba beans (Vicia faba var. Alameda). Journal of Agricultural and Food Chemistry, 49, 2234–2240.
- Greiner, R. & Larsson-Alminger, M. (1999). Purification and characterization of a phytate-degrading enzyme from germinated oat (Avena sativa). Journal of the Science of Food and Agriculture, 79, 1453–1460.
- Ha, N.-C., Oh, B.-C., Shin, S. et al. (2000). Crystal structures of a novel, thermostable phytase in partially and fully calcium-loaded states. Nature Structural Biology, 7, 147–153.
- Hamada, J.S. (1994). Use of polyethylene glycol and high-performance liquid chromatography for preparative separation of Aspergillus ficuum acid phosphatases. Journal of Chromatography A, 658, 371–380.
- Hamada, J.S. (1996). Isolation and identification of the multiple forms of soybean phytases. The Journal of the American Oil Chemists' Society, 73, 1143–1151.
- Han, Y., Wilson, D.B. & Lei, X.G. (1999). Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 65, 1915–1918.
- Hara, A., Ebina, S., Kondo, A. & Funaguma, T. (1985). A new type of phytase from pollen of Typha latifolia L. Agricultural and Bioogical Chemistry, 49, 3539–3544.
- Hayakawa, T., Suzuki, K., Miura, H., Ohno, T. & Igaue, I. (1990). Myo-inositol polyphosphate intermediates in the dephosphorylation of phytic acid by acid phosphatase with phytase activity from rice bran. Agricultural and Biological Chemistry, 54, 279–286.
- Hayakawa, T., Toma, Y. & Igaue, I. (1989). Purification and characterization of acid phosphatases with or without phytase activity from rice bran. Agricultural and Biological. Chemistry, 53, 1475–1483.
- Hayes, J.E., Simpson, R.J. & Richardson, A.E. (2000). The growth and phosphorus utilisation of plants in sterile media when supplied with inositol hexaphosphate, glucose 1-phosphate or inorganic phosphate. Plant and Soil, 220, 165–174.
- Hegeman, C.E. & Grabau, E.A. (2001). A novel phytase with sequence similarity to purple acid phosphatase is expressed in cotyledons of germinating soybean seedling. Plant Physiology, 126, 1598–1608.
- Heinonen, J.K. & Lahti, R.J. (1981). A new and convenient colorimetric determination of inorganic orthophosphate and its application to the assay of inorganic pyrophosphatase. Analytical Biochemistry, 113, 313–317.
- Houde, R.L., Alli, I. & Kermasha, S. (1990). Purification and characterization of canola seed (Brassica sp.) phytase. Journal of Food Biochemistry, 114, 331–351.
- Hübel, F. & Beck, E. (1996). Maize root phytase. Plant Physiology, 112, 1429–1436.
- Igbasan, F.A., Männer, K., Miksch, G., Borriss, R., Farouk, A. & Simon, O. (2000). Comparative studies on the in vitro properties of phytases from various microbial origins. Archives of Animal Nutrition, 53, 353–373.
- Iqbal, T.H., Lewis, K.O. & Cooper, B.T. (1994). Phytase activity in the human and rat small intestine. Gut, 35, 1233–1236.
- Irving, G.C.J. & Cosgrove, D.J. (1972). Inositol phosphate phosphatases of microbiological origin: the inositol pentaphosphate products of Aspergillus ficuum phytase. Journal of Bacteriology, 112, 434–438.
- Jackson, J.F. & Linskens, H.F. (1982). Phytic acid in petunia hybrida pollen is hydrolysed during germination by a phytase. Acta Botanica Neerlandica, 315, 441–447.
- Jariwalla, R.J., Sabin, R., Lawson, S. & Herman, Z.S. (1990). Lowering of serum cholesterol and triglycerides and modulation of divalent cations by dietary phytate. Journal of Applied Nutrition, 42, 18–28.
- Van Der Kaay, J. & Van Haastert, J.M. (1995). Stereospecificity of inositol hexaphosphate dephosphorylation by Paramecium phytase. Biochemical Journal, 312, 907–910.
- Kerovuo, J., Lappalainen, I. & Reinikainen, T. (2000a). The metal dependence of Bacillus subtilis phytase. Biochemical and Biophysical Research Communication, 268, 365–269.
- Kerovuo, J., Rouvinen, J. & Hatzack, F. (2000b). Hydrolysis of phytic acid by Bacillus phytase. Biochemical Journal, 352, 623–628.
- Kerovuo, J., Lauraeus, M., Nurminen, P., Kalkinnen, N. & Apajalahti, J. (1998). Isolation, characterization, molecular gene cloning and sequencing of a novel phytase from Bacillus subtilis. Applied and Environmental Microbiology, 64, 2079–2085.
- Kim, Y.-O., Kim, H.-K. & Bae, K.-S., Yu, J.-H. & Oh, T.-K. (1998a). Purification and properties of a thermostable phytase from Bacillus sp. DS11. Enzyme and Microbial Technology, 22, 2–7.
- Kim, Y.-O., Lee, J.-K. & Kim, H.-K., Yu, J.-H. & Oh, T.-K. (1998b). Cloning of the thermostable phytase gene (phy) from Bacillus sp. DS11 and its overexpression in Escherichia coli. FEMS Microbiology Letters, 162, 185–191.
- Konietzny, U., Greiner, R. & Jany, K.-D. (1995). Purification and characterization of a phytase from spelt. Journal of Food Biochemistry, 18, 165–183.
- Kostrewa, D., Grüninger-Leitch, F., D'Arcy, A., Broger, C., Mitchell, D. & Van Loon, A.P.G.M. (1997). Crystal structure of phytase from Aspergillus ficuum at 2.5× resolution. Nature Structural Biology, 4, 185–190.
- Laboure, A.-M., Gagnon, J. & Lescure, A.-M. (1993). Purification and characterization of a phytase (myo-inositolhexakisphosphate phosphohydrolase) accumulated in maize (Zea mays) seedlings during germination. Biochemical Journal, 295, 413–419.
- Lambrechts, C., Boze, H., Moulin, G. & Galzy, P. (1992). Utilization of phytate by some yeasts. Biotechnology Letters, 14, 61–66.
- Lantsch, H.-J., Hillenbrand, S., Scheuermann, S.E. & Menke, K.H. (1992). Comparative study of phosphorus utilization from wheat, barley, and corn diets by young rats and pigs. Journal of Animal Physiology and Animal Nutrition, 67, 123–132.
- Lehmann, M., Lopez-Ulibarri, R., Loch, C., Viarouge, C., Wyss, M. & Van Loon, A.P.G.M. (2000). Exchanging the active site between phytases for altering the functional properties of the enzyme. Protein Science, 9, 1866–1872.
- Li, J., Hegemann, C.E., Hanlon, R.W., Lacy, G.H., Denbow, M. & Grabau, E.A. (1997a). Secretion of active recombinant phytase from soybean cell-suspension cultures. Plant Physiology, 114, 1103–1111.
- Li, M., Osaki, M., Honma, M. & Tadano, T. (1997b). Purification and characterization of phytase induced in tomato roots under phosphorus-deficient conditions. Soil Science and Plant Nutrition, 43, 179–190.
- Lim, D., Golovan, S., Forsberg, C.W. & Jia, Z. (2000). Crystal structures of Escherichia coli phytase and its complex with phytate. Nature Structural Biology, 7, 108–113.
- Lim, P.E. & Tate, M.E. (1971). The phytases. I. Lysolecithin-activated phytase from wheat bran. Biochimica et Biophysica Acta, 250, 155–164.
- Lim, P.E. & Tate, M.E. (1973). The phytases. II. Properties of phytase fraction F1 and F2 from wheat bran and the myo-inositol phosphates produced by fraction F2. Biochimica et Biophysica Acta, 302, 326–328.
- Lin, J.-J., Dickinson, D.B. & Ho, T.-H.D. (1987). Phytic acid metabolism in Lily (Lilium longiflorum Thunb.) pollen. Plant Physiology, 83, 408–413.
- Liu, B.-L., Jong, C.-H. & Tzeng, Y.-M. (1999). Effect of immobilization on pH and thermal stability of Aspergillus ficuum phytase. Enzyme and Microbial Technology, 25, 517–521.
- Maiti, I.B., Majumber, A.L. & Biswas, B.B. (1974). Purification and mode of action of phytase from Phaseolus aureus. Phytochemistry, 13, 1047–1051.
- Mandel, N.C., Burman, S. & Biswas, B.B. (1972). Isolation, purification and characterization of phytase from germinating mung beans. Phytochemistry, 11, 495–502.
- Maugenest, S., Martinez, I., Godin, B., Perez, P. & Lescure, A.-M. (1999). Structure of two maize phytase genes and their spatio-temporal expression during seedling development. Plant Molecular Biology, 39, 502–514.
- Maugenest, S., Martinez, I. & Lescure, A.-M. (1997). Cloning and characterization of a cDNA encoding a maize seedling phytase. Biochemical Journal, 322, 511–517.
-
Mayer, A.F.,
Hellmuth, K.,
Schlieker, H.
et al.
(1999). An expression system matures: a highly efficient and cost-effective process for phytase production by recombinant strains of Hansenula polymorpha.
Biotechnology and Bioengineering, 63, 373–381.
10.1002/(SICI)1097-0290(19990505)63:3<373::AID-BIT14>3.0.CO;2-T CASPubMedWeb of Science®Google Scholar
- McCollum, E.V. & Hart, E.B. (1908). On the occurrence of a phytin-splitting enzyme in animal tissue. Journal of Biolocigal Chemistry, 4, 497–500.
- Mitchell, D.B., Vogel, K., Weimann, B.J., Pasamontes, L. & Van Loon, A.P.G.M. (1997). The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila. Microbiology, 143, 245–252.
- Modlin, M. (1980). Urinary phosphorylated inositols and renal stone. Lancet, 2, 1113–1114.
- Moore, E., Helly, V.R., Coneely, O.M., Ward, P.P., Power, R.F. & Headon, D.R. (1995). Molecular cloning, expression and evaluation of phosphohydrolases for phytate-degrading activity. Journal of Industrial Microbiology, 14, 396–402.
- Nagai, Y. & Funahashi, S. (1962). Phytase (myo-inositol hexaphosphate phosphohydrolase) from wheat bran. Agricultural and Biological Chemistry, 26, 794–803.
- Nakamura, Y., Fukuhara, H. & Sano, K. (2000). Secreted phytase activities of yeasts. Bioscience, Biotechnology, and Biochemistry, 64, 841–844.
- Nakano, T., Joh, T., Narita, K. & Hayakawa, T. (2000). The pathway of dephosphorylation of myo-inositol hexakisphosphate by phytases from wheat bran of Triticum aestivum L. cv. Nourin #61. Bioscience, Biotechnology, and Biochemistry, 64, 995–1003.
- Nakano, T., Joh, T., Tokumoto, E. & Hayakawa, T. (1999). Purification and characterization of phytase from bran of Triticum aestivum L. cv. Nourin #61. Food Science and Technology Research, 5, 18–23.
- Ohkawa, T., Ebisuno, S., Kitagawa, M., Morimoto, S., Miyazaki, Y. & Yasukawa, S. (1984). Rice bran treatment for patients with hypercalciuric stones: experimental and clinical studies. Journal of Urology, 132, 1140–1145.
- Pasamontes, L., Haiker, M., Henriquez-Huecas, M., Mitchell, D.B. & Van Loon, A.P.G.M. (1997a). Cloning of the phytases from Emericella nidulans and the thermophilic fungus Talaromyces thermophilus. Biochimica et Biophysica Acta, 1353, 217–223.
- Pasamontes, L., Haiker, M., Wyss, M., Tessier, M. & Loon, A.P.G.M. (1997b). Gene cloning, purification, and characterization of a heat-stable phytase from the fungus Aspergillus fumigatus. Applied and Environmental Microbiology, 63, 1696–1700.
- Pen, J., Verwoerd, T.C., Van Paridon, P.A. et al. (1993). Phytase-containing transgenic seeds as a novel feed additive for improved phosphorus utilization. Bio/Technology, 11, 811–814.
- Phillippy, B.Q. (1998). Purification and catalytic properties of a phytase from Scallion (Allium fistulosum L.) leaves. Journal of Agricultural and Food Chemistry, 46, 3491–3496.
- Phillippy, B.Q. (1999). Susceptibility of wheat and Aspergillus niger phytases to inactivation by gastrointestinal enzymes. Journal of Agricultural and Food Chemistry, 47, 1385–1388.
- Piddington, C.S., Houston, C.S., Paloheimo, M. et al. (1993). The cloning and sequencing of the genes encoding phytase (phy) and pH 2.5-optimum acid phosphatase (aph) from Aspergillus niger var. awamori. Gene, 133, 55–62.
- Potter, B.V.L. (1990). Recent advances in the chemistry and biochemistry of inositolphosphates of biological interest. Natural Products Reports, 7, 1–23.
- Potter, S.M. (1995). Overview of proposed mechanisms for the hypocholesterolemic effect of soy. Journal of Nutrition, 125, 606S–611S.
- Powar, V.K. & Jagannathan, V. (1982). Purification and properties of phytate-specific phosphatase from Bacillus subtilis. Journal of Bacteriology, 151, 1102–1108.
- Raboy, V., Gerbasi, P.F., Young, K.A. et al. (2000). Origin and seed phenotypes of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiology, 124, 355–368.
- Rapoport, S., Leva, E. & Guest, G.M. (1941). Phytase in plasma and erythrocytes of vertebrates. Journal of Biological Chemistry, 139, 621–632.
- Rasmussen, S.K. & Hatzack, F. (2000). Identification of two low-phytate barley (Hordeum vulgare L.) grain mutants by TLC and genetic analysis. Hereditas, 129, 107–112.
- Reddy, N.R., Pierson, M.D., Sathe, S.K. & Salunkhe, D.K. (1989). Phytates in Cereals and Legumes. Boca Raton, FL: CRC Press Inc.
- Richardson, A.E. & Hadobas, P.A. (1997). Soil isolates of Pseudomonas spp. that utilize inositol phophates. Canadian Journal of Microbiology, 43, 509–516.
- Richardson, A.E., Hadobas, P.A. & Hayes, J.E. (2001). Extracellular secretion of Aspergillus phytase from Arabidopsis roots enables plants to obtain phosphorus from phytate. The Plant Journal, 25, 641–649.
- Rodriguez, E., Han, Y. & Lei, X.G. (1999a). Cloning, sequencing, and expression of an Escherichia coli acid phosphatase/phytase gene (appA2) isolated from pig colon. Biochemical and Biophysical Research Communications, 257, 117–123.
- Rodriguez, E., Porres, J.M., Han, Y. & Lei, X.G. (1999b). Different sensitivity of recombinant Aspergillus niger phytase (r-phyA) and Escherichia coli pH 2.5 acid phosphatase (r-AppA) to trypsin and pepsin in vitro. Archives of Biochemistry and Biophysics, 365, 262–267.
- Rodriguez, E., Mullaney, E.J. & Lei, X.G. (2000). Expression of the Aspergillus fumigatus phytase gene in Pichia pastoris and characterization of the recombinant enzyme. Biochemical and Biophysical Research Communications, 268, 373–378.
- Ruf, J.C., Ciavatti, M., Gustafsson, T. & Renaud, S. (1991). Effects of PP-56 and vitamin E on platelet hyperaggregability, fatty acid abnormalities, and clinical manifestations in streptozotocin-induced diabetis rats. Diabetis, 40, 233–239.
- Sandberg, A.-S., Rossander Hulthen, L. & Türk, M. (1996). Dietary Aspergillus niger phytase increases iron absorption in humans. Journal of Nutrition, 126, 476–480.
- Sartirana, M.L. & Bianchetti, R. (1967). The effect of phosphate on the development of phytase in the wheat embryo. Physiologia Plantarum, 20, 1066–1075.
- Scott, J.J. (1991). Alkaline phytase activity in nonionic detergent extracts of legume seeds. Plant Physiology, 95, 1298–1301.
- Scott, J.J. & Loewus, F.A. (1986). A calcium-activated phytase from pollen of Lilium longiflorum. Plant Physiology, 82, 333–335.
- Segueilha, L., Lambrechts, C., Boze, H., Moulin, G. & Galzy, P. (1992). Purification and properties of the phytase from Schwanniomyces castellii. Journal of Fermentation and Bioengineering, 74, 7–11.
- Shamsuddin, A.M., Vucenik, I. & Cole, K.E. (1997). IP-6: a novel anti-cancer agent. Life Science, 61, 343–354.
- Shieh, T.R. & Ware, J.H. (1968). Survey of microorganisms for the production of extracellular phytase. Applied Microbiology, 16, 1348–1351.
- Shimizu, M. (1992). Purification and characterization of a phytase from Bacillus subtilis (natto) N-77. Bioscience, Biotechnology, and Biochemistry, 56, 1266–1269.
- Shimizu, M. (1993). Purification and characterization of phytase and acid phosphatase produced by Aspergillus oryzae K1. Bioscience, Biotechnology, and Biochemistry, 57, 1364–1365.
- Shin, S., Ha, N.-C., Oh, B.-C., Oh, T.-K. & Oh, B.-H. (2001). Enzyme mechanism and catalytic property of β propeller phytase. Structure, 9, 851–858.
- Shirai, K., Revah-Moiseev, S., García-Garibay, M. & Marshall, V.M. (1994). Ability of some strains of lactic acid bacteria to degrade phytic acid. Letters in Applied Microbiology, 19, 366–369.
- Simons, P., Versteegh, H., Jongbloed, A. et al. (1990). Improvement of phosphorus availability by microbial phytase in broilers and pigs. British Journal of Nutrition, 64, 525–540.
- Siren, M., Linne, L. & Persson, L. (1991). Pharmacological effects of d-myo-inositol-1,2,6-trisphosphate. In: Inositol Phosphates and Derivatives. Synthesis, Biochemistry and Therapeutic Potential (edited by A.B. Reitz). Pp. 103–110. Washington DC: American Chemical Society.
- Skoglund, E., Carlsson, N.-G. & Sandberg, A.-S. (1997). Determination of isomers of inositol mono- to hexaphosphates in selected foods and intestinal contents using High-Performance Ion Chromatography. Journal of Agricultural and Food Chemistry, 45, 431–436.
- Sreeramulu, G., Srinivasa, D.S., Nand, K. & Joseph, R. (1996). Lactobacillus amylovorus as a phytase producer in submerged culture. Letters in Applied Microbiology, 23, 385–388.
-
Srivastava, B.I.S. (1964). The effect of gibberellic acid on ribonuclease and phytase activity of germinating barley seeds.
Canadian Journal of Botany, 42, 1303–1305.
10.1139/b64-123 Google Scholar
- Tambe, S.M., Kaklij, G.S., Keklar, S.M. & Parekh, L.J. (1994). Two distinct molecular forms of phytase from Klebsiella aerogenes: evidence for unusually small active enzyme peptide. Journal of Fermentation and Bioengineering, 77, 23–27.
- Tomschy, A., Tessier, M., Wyss, M. et al. (2000). Optimization of the catalytic properties of Aspergillus fumigatus phytase based on the three-dimensional structure. Protein Science, 9, 1304–1311.
- Tseng, Y.-H., Fang, T.J. & Tseng, S.-M. (2000). Isolation and characterization of a novel phytase from Penicillium simplicissimum. Folia Microbiologica, 45, 121–127.
- Ullah, A.H.J. (1988a). Production, rapid purification and catalytic characterization of extracellular phytase from Aspergillus ficuum. Preparative Biochemistry, 18, 443–458.
- Ullah, A.H.J. (1988b). Aspergillus ficuum phytase: partial primary structure, substrate selectivity, and kinetic characterization. Preparative Biochemistry, 18, 459–471.
- Ullah, A.H.J. & Cummins, B.J. (1987). Immobiization of Aspergillus ficuum extracellular phytase on fractogel. Biotechnology and Applied Biochemistry, 9, 380–388.
- Ullah, A.H.J. & Gibson, D.M. (1987). Extracellular phytase (E.C. 3.1.3.8) from Aspergillus ficuum NRRL 3135: purification and characterization. Preparative Biochemistry, 17, 63–91.
- Ullah, A.H.J. & Mullaney, E.J. (1996). Disulfide bonds are necessary for structure and activity in Aspergillus ficcum phytase. Biochemical and Biophysical Research Communications, 227, 311–317.
- Ullah, A.H.J., Sethumadhavan, K., Mullaney, E.J., Ziegelhoffer, T. & Austin-Philips, S. (1999). Characterization of recombinant fungal phytase (phyA) expressed in tobacco leaves. Biochemical and Biophysical Research Communications, 264, 201–206.
- Ullah, A. & Shamsuddin, A.M. (1990). Dose-dependent inhibition of large intestinal cancer by inositol hexaphosphate in F344 rats. Carcinogenesis, 11, 2219–2222.
- Vucenik, I., Sakamoto, K., Bansal, M. & Shamsuddin, A.M. (1993). Mammary carcinogenesis inhibition by inositol compounds. Cancer Letters, 75, 95–102.
- Wyss, M., Brugger, R., Kronenberger, A. et al. (1999a). Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolase): catalytic properties. Applied and Environmental Microbiology, 65, 367–373.
- Wyss, M., Pasamontes, L., Friedlein, A. et al. (1999b). Biophysicall characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolase): Molecular size, Glycosylation pattern, and engineering of proteolytic resistance. Applied and Environmental Microbiology, 65, 359–366.
- Wyss, M., Pasamontes, L., Friedlein, A. et al. (1998). Comparison of the thermostability properties of three acid phosphatases from molds: Aspergillus fumigatus phytase, A. niger phytase, and A. niger pH 2.5 acid phosphatase. Applied and Environmental Microbiology, 64, 4446–4451.
- Yamada, K., Minoda, Y. & Yamamoto, S. (1968). Phytase from Aspergillus terreus. Part I. Production, purification and some general properties of the enzyme. Agricultural and Biological Chemistry, 32, 1275–1282.
- Yamamoto, S., Minoda, Y. & Yamada, K. (1972). Chemical and physicochemical properties of phytase from Aspergillus terreus. Agricultural and Biological Chemistry, 36, 2097–2103.
- Yang, W.-J., Matsuda, Y., Inomata, M. & Nakagawa, H. (1991a). Developmental and dietary induction of the 90K subunit of rat intestinal mucosa. Biochimica et Biophysica Acta, 1075, 83–87.
- Yang, W.-J., Matsuda, Y., Sano, S., Masutani, H. & Nakagawa, H. (1991b). Purification and characterozation of phytase from rat intestinal mucosa. Biochimica et Biophysica Acta, 1075, 75–82.
- Yang, G. & Shamsuddin, A.M. (1995). IP-6-induced growth inhibition and differentiation of HT-29 human colon cancer cells: involvement of intracellular inositol phosphates. Anticancer Research, 15, 2479–2488.
- Yanke, L.J., Bae, H.D., Selinger, L.B. & Cheng, K.-J. (1998). Phytase activity of anaerobic ruminal bacteria. Microbiology, 144, 1565–1573.
- Yao, B., Thang, C., Wang, J. & Fan, Y. (1998). Recombinant Pichia pastoris overexpressing bioactive phytase. Science in China, 41, 330–336.
-
Yi, Z. &
Kornegay, E.T. (1996). Sites of phytase activity in the gastrointestinal tract of young pigs.
Animal Feed Science and Technology, 61, 261–368.
10.1016/0377-8401(96)00959-5 Google Scholar
- Yoon, S.J., Choi, Y.J., Min, H.K. et al. (1996). Isolation and identification of phytase-producing bacterium, Enterobacter sp. 4, and enzymatic properties of phytase enzyme. Enzyme and Microbial Technology, 18, 449–454.
- Zamudio, M., González, A. & Medina, J.A. (2001). Lactobacillus plantarum phytase activity is due to non-specific acid phosphatase. Letters in Applied Microbiology, 32, 181–184.
- Zhang, M., Zhou, M., Van Etten, R.L. & Stauffacher, C.V. (1997). Crystal structure of bovine low molecular weight phosphotyrosyl phosphatase complexed with the transition state analog vanadate. Biochemistry, 36, 15–23.